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The development of a compact fourth-order finite volume method for solutions of the
Navier–Stokes equations on staggered grids is presented. A special attention is given to
the conservation laws on momentum control volumes. A higher-order divergence-free
interpolation for convective velocities is developed which ensures a perfect conservation
of mass and momentum on momentum control volumes. Three forms of the nonlinear cor-
rection for staggered grids are proposed and studied. The accuracy of each approximation
is assessed comparatively in Fourier space. The importance of higher-order approximations
of pressure is discussed and numerically demonstrated. Fourth-order accuracy of the com-
plete scheme is illustrated by the doubly-periodic shear layer and the instability of plane-
channel flow. The efficiency of the scheme is demonstrated by a grid dependency study of
turbulent channel flows by means of direct numerical simulations. The proposed scheme is
highly accurate and efficient. At the same level of accuracy, the fourth-order scheme can be
ten times faster than the second-order counterpart. This gain in efficiency can be spent on a
higher resolution for more accurate solutions at a lower cost.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Over a half century, Computational Fluid Dynamics (CFD) plays an important part helping engineers and scientists to
understand the nature of turbulent flows. An accurate time-dependent numerical simulation of turbulent flow can be ob-
tained by direct numerical simulation (DNS) which solve the discrete Navier–Stokes equations directly. DNS can be very
accurate but extremely expensive. The complexity of a DNS is roughly rising with O(Re9/4). This scaling restricts DNS to
low or moderate Reynolds numbers. A promising alternative simulation to DNS is the large eddy simulation (LES) in which
the large-scale structures of the flow are resolved and the small-scale structures are modelled.

In an essence of numerical simulations, these two approaches rely heavily on the accuracy of the spatial information of
the flow field. A satisfactory simulation cannot be obtained if the dynamics of the flow are not described in a sufficiently
accurate way. Modelling effects of the small scales in an LES will not improve the overall accuracy of the solution when
the numerical error was larger than the effects of the small scales [1]. The accuracy of the flow field information can be im-
proved by increasing the numerical grid points or increasing the accuracy order of the numerical approximations. The latter
approach has become an active field of research in recent years.

Higher-order approximations can be computed explicitly using Lagrange polynomials. The nth order approximation of the
mth order derivative requires n + m abscissas. Alternatively, one can couple unknown values to the abscissas and solve a sys-
tem of linear equations. These implicit approximations have shorter stencils and have been called compact scheme by Lele [2]
. All rights reserved.
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who demonstrates the superiority of compact schemes over traditional explicit schemes. At intermediate wave numbers, the
compact fourth-order scheme is even better than the explicit sixth-order scheme. He quantified the resolution characteris-
tics of second and higher-order schemes and showed that for a relative error of 0.1%, the fourth-order compact differentia-
tion requires 5 points per half-wave, the fourth-order explicit requires 8 grid points and the second-order requires 50. In
three-dimensional simulations, the total number of grid points grows cubically while the cost of higher-order schemes is
linearly proportional to the second-order scheme. Thus using higher-order schemes is more attractive than a brute force
increasing of resolution.

The finite volume methods (FVM) hold a strong position in CFD community because of their intrinsic conservation prop-
erties. Despite the popularity of the second-order FVM, there are only a few papers addressing its developments towards
higher-order. The complicated relationship of volume-averaged values and surface fluxes made higher-order FVM more dif-
ficult than the finite difference (FD) counterpart. The first work that tries to link compact schemes to FVM is presented by
Gaitonde and Shang [3]. They present fourth- and sixth-order compact finite volume methods for linear wave phenomena.
However, the so-called reconstruction procedure is needed to compute the primitive value, which costs significant compu-
tational time. A more economical approach is proposed by Kobayashi [4]. He directly calculates the surface-averaged values
from the volume-averaged ones. Explicit and implicit approximations based on the cell-averaged value up to 12th-order are
analysed. Pereira et al. [5] present a compact finite volume method for the two-dimensional Navier–Stokes equations on col-
located grids. Piller and Stalio [6] propose a compact finite volume method on staggered grids in two dimensions. Lacor et al.
[7] develops a finite volume method on arbitrary collocated structured grids and performs LES of a turbulent channel flow at
Res = 180. LES of the same flow with explicit filtering is performed in [8] using the spatial discretisation of [5]. Fourth-order
finite volume in cylindrical domain is developed in [9] and a DNS of pipe flow at Res = 360 is performed.

Staggered grids have become a favourable arrangement over collocated grids because of the pressure decoupling prob-
lem. The pressure decoupling is not confined only in the second-order scheme. This problem is already reported in [5] when
using even number of cells with a fourth-order scheme. Recently, a staggered grid has been shown to be more robust than
collocated one by Nagarajan et al. [10] in large-eddy simulations. Thus compact finite volume methods on staggered grids
deserves more attention.

On staggered grids, there are three problems to solve in order to achieve higher-order accuracy under finite volume dis-
cretisation, namely (i) the approximation of convective velocities, (ii) the treatment of nonlinear terms and (iii) the discretisation
of the pressure term. The convective process requires the convective velocities on the surfaces of the momentum cells which
are defined staggered to the pressure cells. On collocated grids, the face-averaged values of the momentum can be used to
approximate the convective velocities because they are positioned correctly. However, on staggered grids the face-averaged
momentums are aligned differently and the convective velocities must be interpolated accordingly. A simple interpolation,
however, can violate the conservation of mass on the momentum cells. Higher-order divergence-free interpolations are still
an open issue. The treatment of nonlinearity of the convective fluxes over the cell surface was addressed by Pereira et al. [5].
Nevertheless, the reconstruction of the nonlinear fluxes must be chosen wisely. The role of the pressure term in higher-order
methods is still a matter of controversy among researchers in this field. It has been shown in [11–13] that the approximation
of the pressure term has to be the same order as the one of the convective and diffusive fluxes. When the pressure is approx-
imated using lower order, the overall accuracy is limited by this approximation. In [6,14] the second-order solution of pres-
sure is found to be sufficient for a fourth-order accurate solution of velocities. This issue must be clarified because it is crucial
to the cost of computations. The solution of the pressure can easily take more than half of the computation time. If a second-
order approximation of the Poisson equation for the pressure was sufficient, then the higher-order accuracy of the momen-
tum can be achieved at a marginal cost. However, if a fourth-order treatment of the pressure is necessary, a 19-point stencil
of the Laplacian operator must be used instead of a simple 7-point stencil.

In the present work, we have two objectives. The first objective is to present the development of a fourth-order method
for finite volume discretisation of the Navier–Stokes Equations by solving the questions posed in the previous paragraph. We
propose a novel interpolation that preserves the discrete divergence-free property of the velocity fields. This method is gen-
eralized for arbitrary order of accuracy. Another fourth-order convective velocity that is not divergence-free is presented for
comparison. Several choices of nonlinear corrections and the role of the pressure term are studied. We present new cell-cen-
tered deconvolutions for the mass and pressure fluxes. These approximations are explicit and lead to a banded system of the
Poisson equation given by the projection method. The higher resolution properties of these cell-centered deconvolutions are
demonstrated by the comparative Fourier analysis. We show that the solution of the pressure with lower order indeed limits
the accuracy of the solution. However, this limitation on staggered grids is not as severe as on collocated ones reported in
[11]. We use Fourier analysis to show that staggered grids can satisfy the incompressibility constraint in a better way than
collocated grids and more information can be retained in the flow field.

The second objective of this work is to verify whether the fourth-order scheme can out perform the second-order scheme
in terms of accuracy and efficiency. Despite the fact that higher-order schemes are shown to be vastly superior to second-
order schemes in laminar flows by numerous authors, some recent papers report disappointing findings in the application of
higher-order schemes to turbulent flows. Gullbrand [15] applies the fully-conservative explicit fourth-order scheme of
Morinishi et al. [16] and Vasilyev [17] to a DNS of turbulent channel flow. Knikker [13] developed a compact finite difference
method and applied it to the same flow. The grid resolutions used in their simulations are comparable to those used by the
spectral code in [18]. They both report that differences between the results from second-order and fourth-order schemes are
negligible and these results are significantly different from the spectral code. Meinke et al. [19] comment that the sixth-order



A. Hokpunna, M. Manhart / Journal of Computational Physics 229 (2010) 7545–7570 7547
compact scheme is comparable to the second-order upwind scheme in large-eddy simulation of turbulent channel and jet
flows. Shishkina and Wagner [9] also note a similar finding in their DNS of turbulent pipe flow but pointed out that the
fourth-order scheme improves the third- and the fourth-order statistics. In this work we will show that in a turbulent chan-
nel flow, our fourth-order scheme can deliver a comparable result to the second-order scheme using only one-eight number
of cells used by the second-order scheme.

Standard test cases with increasing complexity are used to validate the proposed scheme. First we evaluate the accuracy
of each approximation in the Navier–Stokes equations and identify the determinant of the accuracy by approximating a
Gaussian function. Next, the fourth-order convergence of the full discretisation of the Navier–Stokes equations is demon-
strated in a doubly periodic shear layer flow. The proposed schemes including the boundary closures are examined by mon-
itoring the growth of a perturbation in a plane-channel flow. The quality and the efficiency of the proposed scheme is finally
evaluated using direct numerical simulations of turbulent channel flows at Res = 180 and 590.
2. Navier–Stokes equations and staggered grid system

In this section, we introduce the governing equations for incompressible flows we intend to solve using a finite volume
method. A staggered grid system is defined and the discrete forms of the Navier–Stokes equations (NSE) are discussed.
2.1. Navier–Stokes equation

We solve the Navier–Stokes equations for incompressible flows of a Newtonian fluid in absence of external forces. The
integral forms of the conservation laws of mass and momentum used for finite volume methods read as
Fig. 1.
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Here, u defines the velocity vector, p the pressure, T the strain rate tensor, q the density and m the kinematic viscosity of
the fluid while n is the unit vector on dA pointing outside of the volume X.
2.2. Staggered grid system

On Cartesian grids, a system of staggered grids (Fig. 1) can be set up by putting collocated grid points along a real line x
using a strictly increasing function n(i), xi = n(i), i = 0, . . . ,nx + 1. Staggered grid points are defined by xsi ¼ 1

2 ðxi þ xiþ1Þ,
i = 0, . . . ,nx. The control volume XSi of the momentum uis is defined on the closed interval [xi,xi+1], likewise the control
volume of the pressure cells is defined by Xi = [xsi�1,xsi]. In this setting, half indices mark the position of the control surface
of the corresponding control volumes (full indices) e.g. xsi+1/2 is the x position of the East face of XSi which is corresponding
to xi+1. This leads to the following mapping between two indices, xsi+1/2 = xi+1 and xi+1/2 = xsi. We explicitly call the vector of
staggered grid point as xs to emphasize that xsi ¼ 1

2 ðnðiÞ þ nðiþ 1ÞÞ– n iþ 1
2

� �
. This setting allows an accurate calculation

of divergence on the pressure cell because surfaces of pressure cells are placed exactly at the middle of the momentum
cells.

The finite volume method describes the changes of a volume-averaged quantity by the net fluxes on the surface enclosing
that control volume. These fluxes are surface-averaged quantity. In a second-order context, pointwise, surface-averaged and
cell-averaged values are interchangeable because the second-order local truncation error is acceptable. In higher-order
Arrangement of variables on a non-uniform staggered grids consisting of pressure cells (solid), u-momentum (dash) and w-momentum (dotted)
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context, they are not and must be well identified. In this paper, a cell-averaged value of f defined on a collocated control vol-
ume Xi,j,k = DxiDyjDzk is denoted by
½f �xyz
i;j;k ¼

1
Xi;j;k

Z xiþ1=2

xi�1=2

Z yjþ1=2

yj�1=2

Z zkþ1=2

zk�1=2

f ðx; y; zÞdxdydz: ð3Þ
Accordingly, the cell-averaged value of an x-staggered variable g on XSis,j,k = DxsiDyjDzk is represented by
½g�xyz
is;j;k ¼

1
XSis;j;k

Z xsiþ1=2

xsi�1=2

Z yjþ1=2

yj�1=2

Z zkþ1=2

zk�1=2

gðx; y; zÞdxdydz: ð4Þ
In order to make a distinction of averaged values defined on staggered grid points from the collocated ones, the s is appended
to the indices. Here is stands for the ith staggered grid point, x = xs(i). For example ½u�xyz

is;j;k is half-a-cell staggered from ½p�xyz
i;j;k in

the positive x-direction. Surface and line-averaged values can be defined in a similar way by reducing the dimension of inte-
gration to two and one respectively. For example ½p�yz

is;j;k is surfaced-averaged value of p on the yz-plane located at xsi.

2.3. Discrete form of Navier–Stokes equations

In this section, we introduce the finite volume discretisation of the Navier–Stokes equations and explain the necessity of
the mass conservation on the momentum cells.

2.3.1. Conservation of mass
In incompressible flows, the conservation of the mass flux is equivalent to the conservation of the volume flux and they

will be used interchangeably. On staggered grids, it is convenient to enforce the mass conservation on the control volumes of
the pressure (Xi) where the divergence ½div�xyz

i;j;k from these cells is given by
½div �xyz
i;j;kDxiDyjDzk ¼ ½u�yz

iþ1
2;j;k
� ½u�yz

i�1
2;j;k

� �
DyjDzk þ ½v �xz

i;jþ1
2;k
� ½v�xz

i;j�1
2;k

� �
DxiDzk þ ½w�xy

i;j;kþ1
2
� ½w�xy

i;j;k�1
2

� �
DxiDyj: ð5Þ
The mass conservation dictates that this divergence is zero.

2.3.2. Conservation of momentum
Eq. (2) describes the conservation of the momentum per unit mass. On a staggered grid, we conserve the three compo-

nents: ½u�xyz
is;j;k; ½v �

xyz
i;js;k and ½w�xyz

i;j;ks for the momentum in x, y and z, respectively. Let us consider the discrete form of the momen-
tum equation for the first component:
XSis;j;k

@½u�xyz
is;j;k

@t
¼ �Cis;j;k þ mDis;j;k �

1
q

Pis;j;k: ð6Þ
The terms Cis;j;k;Dis;j;k and Pis,j,k are shorthand notations of net convective, diffusive and pressure fluxes, respectively. On a
Cartesian grid they are defined as follows:
Cis;j;k ¼ ½uu�yz
isþ1

2;j;k
� ½uu�yz

is�1
2;j;k

� �
DyjDzk þ ½vu�xz

is;jþ1
2;k
� ½vu�xz

is;j�1
2;k

� �
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is;j;kþ1
2
� ½wu�xy

is;j;k�1
2

� �
DxsisDyj: ð7Þ
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� �xz

is;j�1
2;k

 !
DxsisDzk þ

@u
@z

� �xy

is;j;kþ1
2

� @u
@z

� �xy
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 !
DxsisDyj:

ð8Þ

Pis;j;k ¼ ½p�yz
isþ1

2;j;k
� ½p�yz

is�1
2;j;k

� �
DyjDzk þ ½p�xz

is;jþ1
2;k
� ½p�xz

is;j�1
2;k

� �
DxsisDzk þ ½p�xy

is;j;kþ1
2
� ½p�xy

is;j;k�1
2

� �
DxsisDyj: ð9Þ
Here we introduce a distinction of the two velocities in the convective term into convective velocities and the convected
velocities. The convective velocities are denoted by Sans-serif fonts u, v and w. The convected velocities (momentum per
unit mass) are denoted by italic font u, v and w. It is important to note that the convective velocities have to be conservative,
i.e. the divergence over the momentum cells has to be zero. If the convective velocities were not mass-conservative, an addi-
tional source term,
½s�xyz
is;j;k � ½div �xyz

is;j;k½u�
xyz
is;j;k ð10Þ
will be added to the r.h.s. of momentum equation (Eq. (6)). Although this source term does not affect the global conservation
of the momentum due to the telescoping property of FVM, the quality of the local solution is degraded and the Galilean
invariant is violated as well.

All the discrete equations in this section are exact and no simplifications or approximations have been introduced so far.
Approximation errors will be introduced when these fluxes are approximated from the volume-averaged values.
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3. Numerical approximations

In this section, we describe, for each term in the discrete Navier–Stokes equations, how it can be approximated by a
fourth-order method. First the approximation for mass flux is presented, followed by the cell-centered approximation for
the pressure. Then approximations of convective and diffusive fluxes for the momentum using the compact fourth-order
approximations of Kobayashi [4] are briefly described. A novel approximation of divergence-free convective velocities is pre-
sented. Finally the nonlinear corrections for staggered grids are discussed.

3.1. Cell-centered deconvolution for the computation of mass fluxes

The enforcement of the mass conservation in Eq. (5) requires the approximation of the surface-averaged values at the cen-
ter of the momentum cells from the volume-averaged ones, which is called deconvolution. The second-order cell-centered
deconvolution (the mid-point rule) can be improved to fourth-order by using this explicit formula:
½u�yz
is;j;k ¼ b1½u�

xyz
is�1;j;k þ b2½u�

xyz
is;j;k þ b3½u�

xyz
isþ1;j;k: ð11Þ
The coefficients of this deconvolution can be found by Taylor expansion or the method of undetermined coefficients. On uni-
form grids they are b1 ¼ b3 ¼ � 1

24 and b2 ¼ 13
12. Let his�1 = Dxsis�1, his = Dxsis and his+1 = Dxsis+1 the coefficients on non-uniform

grids are given by the following formulas:
b1 ¼ �
h2

is

4ðhis�1 þ hisÞðhis�1 þ his þ hisþ1Þ
; b2 ¼ 1� ðb1 þ b3Þ; b3 ¼ �

h2
is

4ðhis þ hisþ1Þðhis�1 þ his þ hisþ1Þ
:

Here we do not explicitly compute b2 from the grid spacing, but the consistency criterion is used instead. We call this
approximation cell-centered deconvolution because it approximates the surface-averaged values at the center of the cells from
the volume-averaged ones.

3.2. Cell-centered deconvolution for the pressure

The fourth-order deconvolution of the pressure on the surface of the momentum cells reads
½p�yz
i;j;k ¼ b4½p�

xyz
i�1;j;k þ b5½p�

xyz
i;j;k þ b6½p�

xyz
iþ1;j;k: ð12Þ
Note that, even if the stencil is exactly the same as in the previously introduced cell-centered deconvolution, the coefficients
can be different when the grid is not uniform. This is because the deconvolved values are not lying on the center of the cells
and the following coefficients must be used:
b4 ¼
2h2

is þ hishisþ1 � his�13his � his�1hisþ1

ðhis þ 2his�1 þ his�2ÞK1
; b5 ¼ 1� ðb4 þ b6Þ; b6 ¼ �

2h2
is�1 þ his�1his�2 � his�13his � hishis�2

ðhis�1 þ 2his þ hisþ1ÞK1
;

K1 ¼ his�2 þ 2his�1 þ 2his þ hisþ1:
This cell-centered deconvolution is fourth-order on uniform grids and third-order on non-uniform grids. Nonetheless, it is
more accurate than other approximations presented here, as will be demonstrated later in Section 6.

3.3. Intercell deconvolution for the computation of momentum fluxes

According to Eq. (7), the convected velocities u on the surface enclosing the staggered control volumes are needed. In con-
trast to Eq. (11) where the deconvoluted quantity is located at the center of the volume-averaged one, here the desired surface-
averaged fluxes are needed at the interfaces between momentum cells i.e. between the volume-averaged quantities. We call
this an intercell-deconvolution. These surface-averages of the momentum are positioned at nonstaggered grid points e.g. xi

and they can be approximated by the following fourth-order compact deconvolution [4]:
a1½u�yz
i�1;j;k þ ½u�

yz
i;j;k þ a2½u�yz

iþ1;j;k ¼ b7½u�
xyz
is�1;j;k þ b8½u�

xyz
is;j;k: ð13Þ
The stencil of this approximation is depicted in Fig. 2. Note that ½u�yz
i;j;k here is equivalent to ½u�yz

is�1
2;j;k

in Eq. (7). On uniform
grids, a1 ¼ a2 ¼ 1

4 and b7 ¼ b8 ¼ 3
4. The coefficients on non-uniform grids are:
a1 ¼
h2

is

ðhis þ his�1Þ2
; a2 ¼

h2
is�1

ðhis þ his�1Þ2
; b7 ¼

2h2
is his þ 2his�1ð Þ
his þ his�1ð Þ3

; b8 ¼
2h2

is his�1 þ 2hisð Þ
his þ his�1ð Þ3

:

It is possible to tune these coefficients in the Fourier space and obtain a better resolution for high wave numbers [2,20], how-
ever, at the expense of the asymptotic convergence rate. In this paper, we aim to construct a genuine fourth-order numerical
scheme for the Navier–Stokes equations, therefore only formal fourth-order schemes are studied here.
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3.4. Intercell differentiation for diffusive fluxes

The compact fourth-order approximation of the first derivative, for example ½@u=@z�yz
isþ1=2;j;k in Eq. (8), is approximated

based on the same stencil used earlier in Eq. (13) and the differentiation formula is given by
Fig. 3.
momen
a3
@u
@x

� �yz

i�1;j;k
þ @u

@x

� �yz

i;j;k
þ a4

@u
@x

� �yz

iþ1;j;k
¼ b9½u�

xyz
is�1;j;k þ b10½u�

xyz
is;j;k: ð14Þ
The coefficients on non-uniform grids are
a3 ¼
hisðh2

is�1 þ his�1his � h2
isÞ

K
; a4 ¼

ðh2
is þ his�1his � h2

is�1Þhis�1

K
; b9 ¼

�12his�1his

K
; b10 ¼

12his�1his

K
;

K ¼ his þ his�1ð Þ h2
is þ 3his�1his þ h2

is�1

� �
:

The fourth-order intercell deconvolution given previously is fourth-order accurate as well on non-uniform grids but the com-
pact differentiation here is third-order on non-uniform grids. However, the transfer function of Eq. (14) is superior to the one
of Eq. (13) and therefore the fourth-order convergence is not compromised as will be shown later.

3.5. Convective velocities

The convective fluxes in Eq. (7) consist of the product of convective velocity (u,v and w) with the convected velocity u, v
and w. Naturally without being concerned about the mass conservation over momentum cells, one could use the deconvo-
luted momentum (per unit mass) ½u�yz

i;j;k, in Eq. (13) as the convective velocity ½u�yz
i;j;k. The approximation of the remaining con-

vective velocities e.g. ½v�xz
is;js;k and ½w�xy

is;j;ks can be done in various ways using the known cell-averaged and face-averaged
velocities. Piller and Stalio [6] propose to use compact interpolations by first approximating the velocities on the surfaces
of the pressure cell e.g. ½w�xy

i;j;ks and then apply another compact interpolation to shift these velocities to the faces of momen-

tum cells e.g. ½w�xy
is;j;ks where they can be used to convect the momentum fluxes. Here we present a more compact form of a

fourth-order interpolation. This interpolation only utilizes the information on the two cells enclosing the interested surface
(see Fig. 3). The compact interpolation for the convective velocity ½w�xy

is;j;ks reads
½w�xy
is;j;ks ¼ k1 � k2 � k3 þ RðD4Þ; ð15Þ
where,
k1 ¼
6
8
½w�xyz

is�1
2;j;ks
þ ½w�xyz

isþ1
2;j;ks

� �
;

k2 ¼
1
8
½w�yz

isþ1;j;k � 2½w�yz
is;j;k þ ½w�

yz
is�1;j;k

� �
;

k3 ¼
1
8
½w�xy

is�1
2;j;ks�1

2
þ ½w�xy

isþ1
2;j;ks�1

2
þ ½w�xy

isþ1
2;j;ksþ1

2
þ ½w�xy

is�1
2;j;ksþ1

2

� �
:

Approximation stencil of ½w�xy
is;j;kþ1

2
in Eq. (15). The solid box is the pressure cell, the dashed box is the u-momentum cell and dotted boxes are the w-

tum cells.
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The leading remainder terms are
R ¼ � 1
384

@4w
@x4 Dx4 � 1

192
@4w
@x2z2 Dx2Dz2 � 1

1920
@4w
@z4 Dz4:
This stencil is as small as the second-order stencil thus it does not require extra boundary closures. The surface-averaged
velocities obtained from the two interpolations in Eqs. (13) and (15) can be used as convective velocities. These convective
velocities are fourth-order accurate but not necessarily mass-conservative. We denote these convective velocities as T4.
3.6. Divergence-free convective velocities

The divergence-free property of the convective velocities has been addressed by Verstappen and Veldman [21]. They
show that it is a necessary condition for the energy conservation. In their work, the fourth-order solution of the convective
terms is not computed from a direct fourth-order approximation, but rather a Richardson extrapolation from second-order
solutions of a small control volume and a larger one. A direct computation of fourth-order convective velocities is thus
avoided. This approach ensures the mass and energy conservation on momentum cells but it is using a stencil width of 7-
h in each direction for one momentum cell. This wide stencil can reduce the resolution properties of the scheme. In this sec-
tion we propose a new divergence-free interpolation which only requires a stencil width of 4-h.
3.6.1. Concept
The simplest way of computing divergence-free convective velocities is to use a linear combination of the volume fluxes

that are already divergence-free. This means we should compute the convective velocities from the volume fluxes over the
surface of the pressure cells in which the continuity is enforced. For example, the convective velocity of the u-momentum
can be computed from the volume fluxes on neighbouring pressure cells sharing the same x-coordinate. The remaining dif-
ficulty is that we have to work with two directions of fluxes. In the first, the fluxes are aligned with the momentum e.g. the
approximation of u for u-momentum. In the second, the fluxes are normal to the momentum e.g. the approximation of w for
u-momentum. These fluxes are defined on different positions and when the grid was not uniform, they would require a dif-
ferent set of coefficients.

Now, we consider the discrete divergence written as a summation of matrix–vector multiplications:
Dxuþ Dyv þ Dzw ¼ div: ð16Þ
Any linear transformations matrix T applied to this equation will not change the summation. This means if the same inter-
polation was used for all three velocities, the mass conservation will remain unchanged. Using constant coefficient is of
course one of the possibilities, but this does not give a fourth-order convergence. In order to use the same interpolation,
we have to convert one of the fluxes into a compatible form with the other one.

The interpolation of the fluxes aligned with the momentum can be done easily using Lagrange interpolations. Therefore
we choose to convert the fluxes normal to the direction of the momentum. Inspired by the primitive value reconstruction of
Gaitonde and Shang [3], we convert the fluxes normal to the direction of the momentum to line averaged ones such that the
same interpolation can be used. To this end, we invoke the second fundamental theorem of Calculus:
Z b

a
f ðxÞ ¼ FðbÞ � FðaÞ; ð17Þ

F ¼
Z

f ðxÞ: ð18Þ
In two dimensions, the surface-averaged value of the volume flux on the top of pressure cell and the associated line-averaged
primitive are related by
½w�xy
i;j;ks ¼

1
Dxi

½W�yis;j;ks � ½W�
y
is�1;j;ks

� �
: ð19Þ
The primitive values can be reconstructed at the top of the East and West faces of the pressure cell using this formula. We
can now interpolate these values using the same method as was used for u. After that, the interpolated primitive values can
be converted back to surface-averaged values using the same relationship. These two conversions are exact. However, a di-
rect implementation of the above method is expensive. A total floating point operations of 8m is required for the (2m)th-or-
der interpolation, instead of just 4m � 1. The novelty of our approach is the elimination of these extra costs.

In what follows, we derive a method to approximate the second-order divergence-free convective velocities and gener-
alize the method for arbitrary order of accuracy.
3.6.2. Second-order divergence-free convective velocities
To derive an expression for the convective velocities which is divergence-free and second-order accurate, we start from

the mass conservation equation of the u-momentum cell on XSi,j,k:
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½div �xyz
is;j;kDxsiDyjDzk ¼ ½u�yz

iþ1;j;k � ½u�
yz
i;j;k

� �
DyjDzk

þ ½v�xz
is;js;k � ½v�

xz
is;js�1;k

� �
DxsiDzk

þ ½w�xy
is;j;ks � ½w�

xy
is;j;ks�1

� �
DxsiDyj: ð20Þ
Applying the second fundamental theorem of Calculus to the above equation leads to
½div �xyz
is;j;kDxsiDyjDzk ¼ ½u�yz

iþ1;j;k � ½u�
yz
i;j;k

� �
DyjDzk þ ½V�ziþ1;js;k � ½V�

z
i;js;k

� �
� ½V�ziþ1;js�1;k � ½V�

z
i;js�1;k

� �h i
Dzk

þ ½W�yiþ1;j;ks � ½W�
y
i;j;ks

� �
� ½W�yiþ1;j;ks�1 � ½W�

y
i;j;ks�1

� �h i
Dyj: ð21Þ
The divergence of the convective velocities is expressed in terms of variables given at xi and xi+1. A desired variable f at xi can
be obtained by a second-order interpolation using the respective variables from xsi�1 and xsi by the following formula:
fi ¼ ci;1fis�1 þ ci;2fis; ð22Þ
where ci,1 and ci,2 are the respective interpolation coefficients. The reconstruction of the primitive values of w on the pres-
sure cells can be started by assuming that ½W�yis�1;j;k is known and the subsequent primitive values can be computed using Eq.
(19) together with Eq. (22). Together with Eqs. (19) and (22) we obtain
½w�xy
is;j;ksDxis ¼ ciþ1;1½W�

y
is;j;ks þ ciþ1;2½W�

y
isþ1;j;ks

� ci;1½W�
y
is�1;j;ks � ci;2½W�

y
is;j;ks: ð23Þ
After regrouping of variables, the convective velocity on the top surface of ½u�xyz
is;j;k is given by
½w�xy
is;j;ks ¼ h0½W�yis�1;j;ks þ h1½w�xy

i;j;ks þ h2½w�xy
iþ1;j;ks ð24Þ
with,
h0 ¼
1

Dxis
ðciþ1;1 þ ciþ1;2Þ � ðci;1 þ ci;2ÞÞ;

h1 ¼
Dxi

Dxis
ððciþ1;1 þ ciþ1;2Þ � ci;2Þ;

h2 ¼
ciþ1;2Dxiþ1

Dxis
:

The coefficient of the unknown primitive value, ½W�yis�1;j;k is reduced to a difference between the sum of two sets of interpo-
lation coefficients. The consistency dictates that the sum of any set of interpolation coefficients is equal to unity thus h0 = 0
and ½W�yis�1;j;k can be removed from the interpolation. This leads to a convenient way of computing convective velocities using
the new set of interpolation coefficients, h. In this formulation, the construction of primitive values and the back transfor-
mation are fully avoided.

The net volume flux leaving the control volume of Xis,j,k under the second-order divergence-free interpolation is
½div �xyz
is;j;k ¼ ci;1½div �xyz

i;j;k þ ciþ1;2½div �xyz
iþ1;j;k: ð25Þ
This equation indicates that the imbalance of mass fluxes at the momentum cell is of the same order of magnitude as the one
enforced at the pressure cells.

3.6.3. Fourth-order divergence-free convective velocities
A fourth-order Lagrange interpolation formula for the convective velocity ½u�yz

i;j;k at the cell face in x-direction of the u
momentum can be obtained by
½u�yz
i;j;k ¼ ci;1½u�

yz
is�2;j;k þ ci;2½u�

yz
is�1;j;k þ ci;3½u�

yz
is;j;k þ ci;4½u�

yz
isþ1;j;k: ð26Þ
The coefficients of this interpolation are the same as the ones for a fourth-order Lagrange interpolation of pointwise values.
We can proceed with the similar procedure as in the second-order divergence-free interpolation and arrive at
½w�xy
is;j;ks ¼ his;1½w�xy

i�1;j;ks þ his;2½w�xy
i;j;ks þ his;3½w�xy

iþ1;j;ks þ his;4½w�xy
iþ2;j;ks: ð27Þ
We call this convective velocity DF4. On uniform grids, the two sets of interpolating coefficients ci,1�4 and h1�4 are
�1
16 ;

9
16 ;

9
16 ;

�1
16

� 	
, in numerical order. The divergence-free interpolation of the convective velocities can be generalised for arbi-

trary order. Suppose that a (2m)th-order Lagrange interpolation is used instead of Eq. (26), then the (2m)th-order diver-
gence-free interpolation of the convective velocity on the top surface of the u-momentum cell is given by
½w�xy
is;j;ks ¼

X2m

l¼1

his;l½w�xy
i�mþl;j;ks

� �
ð28Þ
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with,
his;l ¼
X2m

j¼l

ciþ1;j �
X2m

j¼lþ1

ci;j

 !
Dxi�mþl

Dxis
: ð29Þ
Identical coefficients are used for v. This higher-order divergence-free interpolation can be applied for any position in the
field.

3.7. Nonlinear correction

The convective term [ujui] is the origin of the nonlinearity in the Navier–Stokes equations. This term is responsible for
energy transfer between different scales and wave components smaller than the Nyquist limit can be created by it. In finite
difference methods the product of uj and ui is the exact value of uiuj. On the other hand, the approximation of the nonlinear
term in finite volume methods using [ujui] = [ui][uj] is only second-order accurate. Additional operations are needed to
achieve higher-order accuracy in finite volume methods. In this work we use variants of the nonlinear correction approach
proposed by Pereira et al. [5].

A fourth-order accurate approximation of a nonlinear term can be obtained by adding some corrections to the second-
order approximation:
½fg�yz ¼ ½f �yz½g�yz þ Dy2

12
@f
@y

@g
@y
þ Dz2

12
@f
@z

@g
@z
þ OðDy4;Dz4Þ: ð30Þ
The original formula of [5] computes the correction term from the cell-averaged values. First the second-order interpolation
is used to compute the face-averaged values then the computed values are used for the approximation of the first-derivative.
Here, we use the surface-averaged values which are readily available from the approximation of the momentum fluxes (Eq.
(13)). The use of the surface-averaged values allows a cheaper computation and better resolution characteristics. The fourth-
order approximation for the convection term on the East face of u-momentum is given by:
½uu�yz
iþ1;j;k ¼ ½u�

yz
iþ1;j;k½u�

yz
iþ1;j;k þ

1
48
½u�yz

iþ1;jþ1;k � ½u�
yz
iþ1;j�1;k

� �2
þ 1

48
½u�yz

iþ1;j;kþ1 � ½u�
yz
iþ1;j;k�1

� �2
: ð31Þ
On the top face we use the following formula:
½wu�xy
is;j;ks ¼ ½w�

xy
is;j;ks½u�

xy
is;j;ks þ

1
24
½u�xy

isþ1;j;ks � ½u�
xy
is�1;j;ks

� �
½w�xyz

iþ1;j;ks � ½w�
xyz
i;j;ks

� �
þ 1

24
½u�xy

is;jþ1;k � ½u�
xy
is;j�1;k

� �
½w�xz

i;js;k � ½w�
xz
i;js�1;k

� �
:

ð32Þ
The proposed forms above are one of many possibilities. In Section 6.2 we consider some other possible forms of nonlinear
corrections. However, the proposed forms here are the most accurate.

4. Projection method

When the momentum equation is integrated in time, the new velocity fields are not necessarily divergence-free and thus
usually called provisional velocities. One of the most successful approaches ensuring the mass-conservation after the time
integration is the fractional time step method (FTSM) which operates on these provisional velocities. Traditionally there are
two classes of the FTSM namely pressure-Poisson and projection methods [22]. The pressure-Poisson method does not truly
solve for the pressure itself, instead, it solves for a pressure-like variable / which is a Lagrange multiplier for a diver-
gence-free velocity field that is closest to the provisional velocity field. On the other hand, projection methods solve for
the divergence-free field which has the same vorticity as the provisional velocity. Both approaches have to solve a Poisson
equation, but with a different form of the discrete Laplacians.

Consider the explicit Euler time integration of u-momentum. Let un be the velocity and Hn be the contribution from con-
vective and diffusive terms at time tn. Let u* be the provisional velocity evaluated without the pressure term and un+1 be the
divergence-free velocity field at the new time step when a suitable p is used. The equations for u* and un+1 are shown below.
u� ¼ un þ dtHn; ð33Þ

unþ1 ¼ un þ dtHn � dt
q
rp: ð34Þ
The divergence of the difference between (33) and (34) gives the Poisson equation for the pressure,
r � rp ¼ q
dt
r � u�: ð35Þ
This equation is identical to the one obtained from taking the divergence of the momentum equation. Thus the pressure
found in (35) is essentially the pressure at time tn. Once the solution of pressure is obtained, the divergence-free velocity
field can be recovered by
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unþ1 ¼ u� � dt
q
rp: ð36Þ
The new velocity is divergence free and its vorticity is equal to that of the provisional velocity because,
r� unþ1 ¼ r� u� � dt
q
r�rp ¼ r� u�: ð37Þ
In this derivation, the projection method and the pressure-Poisson method are essentially the same. They will go separate
ways when the approximations of gradient and divergence are introduced. Suppose discrete divergence operators D and
G are used to approximate the divergence and gradient, respectively. Then the discrete form of Eq. (35) is
DGp ¼ q
dt

Du�: ð38Þ
The projection method adheres to this derivation and the discrete Laplacian is given by L = DG. The Laplacian in pressure-
Poisson formulation represents the minimization which is not related to the Navier–Stokes equations and thus any discrete
Laplacian will suffice. Solving Eq. (38) by a direct method and correcting the velocity using the respective discrete gradient
will result in a machine accurate divergence. Using a Laplacian operator other than this one will leave a significant diver-
gence in the velocity fields, even when solved with a direct method. When the Poisson equation is solved by iterative meth-
ods, pressure-Poisson formulations need to recalculate the divergence and then start the iteration again. On the other hand,
projection methods only need to compute the divergence once. Therefore the projection method offers a clear computational
advantage over the pressure-Poisson formulation when aiming at small mass-conservation errors. The projection operator
deriving the method’s name is defined as
P ¼ I� GðDGÞ�1D:
The derivation shown here is equivalent to the Helmholtz–Hodge decomposition in [23] which states that any vector field u*

can be uniquely decomposed into two orthogonal fields: u a divergence-free field and rp a gradient of a potential field.
However, it should be noted that the projection method does not conserve the L2-norm of the provisional velocity. Let (�, �)

be a scalar product of two vectors, the L2-norm of the Helmholtz–Hodge decomposition is given by
ðu�;u�Þ ¼ ðu;uÞ þ ðrp;rpÞ þ 2ðrp;uÞ:
Because the two components are orthogonal, the third term on the r.h.s. vanishes and we have
ðu�;u�Þ ¼ ðu;uÞ þ ðrp;rpÞ;
ðu�;u�ÞP ðu;uÞ:
If the divergence-free field u were to have the same L2-norm as u*, the rp and u cannot be orthogonal which is against the
underlying concept of projection methods. This equation indicates that the energy is strictly decreasing, when the provi-
sional velocity was not divergence-free. This fact is used by Chorin [24] to show the stability of the projection method. There-
fore the projection method is stable, but not energy-conserving. Even if the numerical scheme for the momentum equation
was energy conserving, a reduction in L2 norm of the momentum can be expected.

In fourth-order context, we have the freedom to use second-order or fourth-order approximations for D and G. This leads
to four possible choices of the Laplacian namely (i) D2G2, (ii) D2G4, (iii) D4G2 and (iv) D4G4. The first and the fourth Laplacian
are formal second-order and fourth-order, respectively. The other two are non-formal. In an existing second-order code, the
second-order projection method (D2G2) is usually implemented. On staggered grids this D2G2 is a well known 7-points Lapla-
cian which can be solved in a very efficient way. The most important question here is whether D2G2 is sufficient to deliver a
fourth-order accurate solution of the velocities. In this paper we restrict the study to the two formal Laplacians. In-depth
investigation of these four Laplacians will be reported elsewhere.

4.1. Discretisation of Poisson equation

On uniform grids, the component in x direction of the fourth-order Laplace operator given by the projection method reads
@2½p�xyz
i;j;k

@x2 ¼
½p�xyz

i�3;j;k � 54½p�xyz
i�2;j;k þ 783½p�xyz

i�1;j;k � 1460½p�xyz
i;j;k

576
: ð39Þ
On non-uniform grids it is convenient to construct the Laplacian from the matrices D4x and G4x which are the approximations
of the cell-averaged values of divergence and gradient, respectively. They are given by
D4x ¼
IcðisÞ � Icðis� 1Þ
xsðisÞ � xsðis� 1Þ and G4x ¼

I0cðiþ 1Þ � I0cði� 1Þ
xðiþ 1Þ � xðiÞ ;
where Ic and I0c are the cell-centered deconvolutions defined in Eqs. (11) and (12), respectively. The consistent Laplacian oper-
ator in x-direction is simply given by L4x = D4xG4x and the three-dimensional Laplacian is
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L4 ¼ D4xG4x þ D4yG4y þ D4zG4z; ð40Þ

which leads to 19-point stencil. In this work, we use a direct method that uses fast Fourier transformations in the periodic
directions and the Gaussian elimination in the wall-normal direction. After solving the Poisson equation, the divergence-free
velocity is recovered by Eq. (36) with the respective discrete gradient. In general cases, the grid spacing may not be uniform
and the FFT will not work. Since the residual obtained from the discrete Laplacian given by the projection method is the mass
imbalance in the flow field, one can simply compute the residual using Eq. (40) and solve the equation by a relaxation
method such as Stone’s strongly implicit procedure [25]. It was shown in [26] that the divergence-free approximate projec-
tion method can further reduce the number of stencil points of the discrete Laplacian to 13 without degrading the accuracy
of the solution. The performance of an iterative Poisson solver with this approach was shown in [27] to be 15% slower than
the direct method used in this work for the divergence at the order of 10�5ub/H.

5. Boundary closures

Near the boundary we cannot use all of the formula proposed earlier due to lack of information outside the domain. Either
asymmetric stencils, a certain kind of extrapolation or lower-order stencils must be used. Carpenter et al. [28] pointed out that
high-order closures might be unstable in a finite difference context. For example, the fourth-order scheme must be closed
with third-order closure to ensure stability. In finite volume context, Kobayashi [4] reported that the fourth-order closure
is necessary for a fourth-order global accuracy. Neumann boundary conditions are intensively studied in his work. In this sec-
tion we consider the treatment of the solid surface as a Dirichlet boundary condition depicted in Fig. 4. Approximation stencils
near solid surfaces should not extend too much into the inner domain because the strong differences in the velocity gradient
near the wall and in the inner domain decrease the accuracy. The compact fourth-order schemes require only the two nearest
cells at the boundary thus it is less sensitive to this problem compared to the explicit fourth-order scheme.

5.1. Closures for collocated variables

For the deconvolution of collocated variables at the boundary (Fig. 4(a)), the value given by the boundary can be used
directly in the deconvolution formula of the inner domain (Eq. (13)). The boundary value can be moved to the right-
hand-side and the resulting linear system can be solved by the Thomas algorithm. The only closure needed here is for the
differentiation (Eq. (14)). In our work we use a third-order closure at the boundary:
@u
@z

� �xy

is;j;0s

þ 2
@u
@z

� �xy

is;j;1s

¼ 3
2hz

½u�xyz
is;j;1 þ ½u�

xyz
is;j;2

� �
� 3

hz
½u�xy

wall: ð41Þ
This closure has the same convergence rate as the differentiation in the inner domain when the grid is not uniform. Thus
using this third-order differentiation here does not degrade the global accuracy.

5.2. Closures for staggered variables

The first staggered cell in the domain is half-a-cell far from the boundary (Fig. 4(b)) and the inter-cell deconvolution in Eq.
(13) is closed by the following fourth-order approximation:
½w�xy
i;j;1 þ

19
21
½w�xy

i;j;2 ¼
11
7
½w�xyz

i;j;1s þ
1
7
½w�xyz

i;j;2s þ
4

21
½w�xy

i;j;wall: ð42Þ
The third-order closure for the differentiation in Eq. (14) is
@w
@z

� �xy

i;j;1
� 11

13
@w
@z

� �xy

i;j;2
¼ 36

23h
½w�xyz

i;j;1s �
12

23h
½w�xyz

i;j;2s �
24

23h
½w�xy

i;j;wall: ð43Þ
(b)(a)

1s

2s

1

2

k ks

0s

Arrangement of the closure stencils near the Dirichlet boundary condition: (a) compact differentiation of collocated variables and (b) compact
olution and differentiation of staggered variables. Solid rectangles are the collocated cells (u) and dashed rectangles are staggered cells (w). Known
are shown by the circles and the arrows represent the position of the approximated surface-averaged values.
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It is noteworthy that using deconvolved values for the differentiation is not recommended even though its asymptotic errors
are fourth-order. The nth order leading truncation term of the deconvolution transfers into (n � 1)th order for the differen-
tiation thus using them for the differentiation does not improve the accuracy.

In the cell-centered deconvolution and the approximation of convective velocities, we simply set the velocity to the wall
value, for example zero in the case of a no-slip wall. The pressure cell within the wall is assumed to be equal to the pressure
at the first cell in the domain. This ensures a second-order accurate enforcement of @p

@n ¼ 0 at the wall. A similar extrapolation
is also used by Verstaapen and Veldman [21]. These treatments are sufficient for the fourth-order convergence which will be
shown numerically in Section 7.
6. Analysis

The accuracy of the NSE solver is determined by every single approximation step in the code. It is important to under-
stand how large the errors are being generated in each term. Fourier analysis provides us with a quantitative error for each
wave number. The convective and diffusive terms used in this paper have been studied already in [4,6]. In this section we
perform a comparative study of numerical errors in the Fourier space. The fourth-order compact deconvolution, compact dif-
ferentiation, and cell-centered deconvolution are compared.

6.1. Comparative fourier analysis of linear terms

In finite difference context, Fourier analysis of the discretisations of convective and diffusive terms lead to the study of the
modified wave number k* and the modified k2*, respectively. In finite volume context, where the PDEs are integrated, the
quantifications of the accuracy in Fourier space leads to the modified amplitude and modified wave number. These two
quantities provide us a great deal of information. However, they cannot be directly compared. A better measurement for
comparison is the transfer function where the approximated value is normalized by the exact one. In this section we use
the concept of transfer function to compare each approximation in the momentum equation as well as the mass conserva-
tion equation.

In order to perform a Fourier analysis of a periodic function u(x) over the domain [0,L], the function u(x) is decomposed into
its respective Fourier components. We use a scaled wave number, kh 2 [0,p], similar to [2] and each Fourier component is given
by ûkexpðikhÞ. The model equation we consider here is the one-dimensional transport equation in a periodic domain described
by
@u
@t
þ c

@u
@x
¼ C

@2u
@x2 : ð44Þ
The finite volume discretisation of the above equation is
1
X
@�ui

@t
þ c½~uiþ1=2 � ~ui�1=2� ¼ C

f@u
@x







iþ1=2

�
f@u
@x







i�1=2

24 35: ð45Þ
In this one-dimensional problem we use the overbar to represent cell-averaged values and the approximations are repre-
sented by tilde symbol. Projecting the above equation in the Fourier space, we obtain the following equation for each
wave-number k:
@ �̂uk

@t
þ ickTIðkÞ�̂uk ¼ �Ck2TDðkÞ�̂uk: ð46Þ
The transfer function of an approximation is defined by the ratio of the approximated value over the exact value, for example
TIðkÞ ¼ ~̂uk=ûk defines the transfer function of a deconvolution. The transfer function of the differentiation is defined equiv-
alently. The overall accuracy of a numerical solution of the transport equation is determined by TI and TD. For the purpose
of a general analysis, let c = C = 1 such that only errors of the approximations are considered.

The transfer functions of the cell-centered deconvolution (Eq. (11)), inter-cell deconvolution (Eq. (13)) and the differen-
tiation (Eq. (14)) are plotted in Fig. 5. The significant improvement of the compact fourth-order deconvolution over the sec-
ond-order is clearly shown. During the projection step, the mass fluxes are computed by the cell-centered deconvolution (Eq.
(11)). According to Fig. 5, the second-order cell-centered deconvolution (mid-point rule) is less accurate than the fourth-or-
der inter-cell deconvolution (Eq. (13)), especially for 0.5 < kh < 2. When the mid-point rule was used to enforce the mass con-
servation, the errors of the wave components in this range will remain in the velocity fields and thus degrade the level of
accuracy that was achieved by the compact fourth-order. The fourth-order cell-centered deconvolution (Eq. (13)) is more
accurate than the compact fourth-order inter-cell deconvolution through out the Fourier space.

The discussed cell-centered deconvolutions are used for the mass conservation and the pressure gradient in staggered
grid arrangement. According to Fig. 5, we could expect that these approximations will not reduce the accuracy of the com-
pact scheme. Therefore we do not need compact deconvolutions for the approximations of mass and pressure fluxes in staggered
grids. On the other hand, it is clear that in collocated grids the compact scheme must be used for the approximations of mass
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Fig. 5. Comparison of the transfer function of standard second-order and higher-order schemes: second-order inter-cell deconvolution (TI2), fourth-order
compact inter-cell deconvolution (TI4), fourth-order compact differentiation (TD4), second-order cell-centered deconvolution (TC2) and fourth-order cell-
centered deconvolution (TC4).
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and pressure fluxes. Otherwise the accuracy will be limited to that of the explicit scheme. This finding thus has a very impor-
tant consequence because these two explicit stencils (Eqs. (11) and (12)) lead to a narrow banded Laplacian which can be
solved much easier than the full one which would arise when using implicit scheme for D or G like in [11,13].

With this analysis, we can also explain why the second-order solution of pressure on collocated grids strictly limits the accu-
racy to second-order as reported in [11]. This limitation is, however, less severe on staggered grids. It will be shown later in Sec-
tion 7 that, on staggered grids a convergence rate of approximately third-order can be achieved with the second-order solution
of pressure.

6.2. Fourier analysis of nonlinear terms

Let us consider the fourth-order approximation of the nonlinear convective flux on the East surface of the u-momentum:
½uu�yz
iþ1;j;k ¼ C2þ Ni; ð47Þ
where C2 ¼ ½u�yz
iþ1;j;k½u�

yz
iþ1;j;k, the second-order approximation of the nonlinear convective term. There are several straight for-

ward methods which can be used to compute the nonlinear correction, Ni. In this study we consider three forms for the cor-
rection term Dz2

12
@f
@z

@g
@z in Eq. (30):
N1 ¼
1

48
½u�yz

iþ1;j;kþ1 � ½u�
yz
iþ1;j;k�1

� �2
: ð48Þ
N2 ¼
1

192
½u�xyz

is;j;kþ1 þ ½u�
xyz
isþ1;j;kþ1

� �
� ½u�xyz

is;j;k�1 þ ½u�
xyz
isþ1;j;k�1

� �� �2
: ð49Þ
N3 ¼
1

192
@u
@z

� �xy
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� �xy

isþ1;j;ks

þ @u
@z

� �xy
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� �xy
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 !2

ð50Þ
The first correction uses surface-averaged values, the second equation uses cell-averaged values and the third equation aver-
ages the first-derivatives provided by the compact differentiation. The nonlinear correction term is analysed using an ansatz
function u(x,z) = exp((i + 0.4)kx + az). This function mimics an oscillating velocity under an exponential gradient in z-direc-
tion and its amplitude is varied in x-direction. The cell-averaged values here are treated as exact and surface-averaged values
used for C2 are fourth-order accurate. The interpolated terms are computed by multiplying the analytical value with the
modified amplitude of this ansatz function.

Instead of looking at the whole nonlinear convective term, we consider here just the transfer function of the correction
term. The norm of the error, L2(j1 � T(Ni)j) over kh 2 [0,p/2] is shown in Table 1. The first row is the norm of the analytical
correction, and at the same time the error when we do not apply any correction. According to the table, nonlinear corrections
improve the accuracy when the gradient is not too high and they are able to predict roughly two digits of the correction term.
The correction using face-averaged values (N1) is more accurate than the one using cell-average values (N2). This is attributed
to the inferior transfer functions of second-order approximations. The third form (N3) is slightly more accurate than the sec-
ond form (N2) at the lowest gradient, but it performs poorly otherwise. Thus computing the nonlinear correction using face-
averaged values is recommended.



Table 1
Square root of L2-norm of errors of the correction term (kNexact � Nik2) over kh 2 [0,p/2].

Nonlinear correction form a = 0.5 a = 1.0 a = 1.5

Without correction 2.7E�2 1.1E�1 2.7E�1
N1 2.2E�3 4.4E�2 2.9E�1
N2 3.9E�3 5.3E�2 3.2E�1
N3 3.3E�3 8.4E�2 4.3E�1
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7. Results and discussion

In this section the proposed scheme is evaluated using standard test cases with increasing complexity. First we evaluate
each approximation in the NSE using a priori testing. The full discretisation of the NSE is validated in a doubly-periodic shear
layer. Treatments of the boundary conditions are evaluated using the instability of plane channel flow. Finally, the practical
use of the proposed scheme is demonstrated by direct numerical simulations of turbulent channel flow. The accuracy and
efficiency of the scheme are compared to the second-order scheme.

In all simulations, the time-integration is performed by the third-order Runge–Kutta scheme of [29] and the continuity is
enforced at every sub-step. This time integration is third-order accurate for both velocity and pressure. The nonlinear cor-
rection and fourth-order solution of the pressure are always used except when stated otherwise.

7.1. A priori test

A simple Gaussian function uðxÞ ¼ 0:5exp �lnð2Þ x2

9

� �
as proposed in [30] is used as our test function. The domain is set to

[�20,20] such that errors at both ends do not affect the global accuracy. We initialize the cell-averaged values analytically
and numerical approximations are computed from these cell-averaged values. In this test we consider fourth-order decon-
volutions (Eqs. (11) and (13)), the fourth-order differentiation (Eq. (14)) and the fourth-order nonlinear correction with Eq.
(48). The errors of these approximations are investigated and plotted in Fig. 6 in which second and compact sixth-order
deconvolutions are presented for comparison. In this test case, the error graphs of every scheme are oscillating because they
are strongly dependent on the sampling position. Therefore, only the error on even number of cells are plotted for clarity.
According to the figure, the error of the second-order inter-cell deconvolution (I2) is roughly four times larger than that
of the cell-centered (C2). The fourth-order inter-cell approximations (I4,D4) are comparable to the cell-centered deconvolu-
tion (C4) on large number of grid cells. The cell-centered deconvolution (C4) is the most accurate in general among the
fourth-order approximations. The sixth-order compact scheme (I6) is better than the compact fourth-order scheme (I4).
However, the compact sixth-order scheme (I6) (from [4]) is only significantly better than C4 only when n > 20. At this res-
olution, approximately 8 cells are used to represent the Gaussian bump (x 2 [�8,8]).
7.2. Doubly-periodic shear layer

In order to expose the role of the pressure, we use a doubly periodic shear layer as the next test case. This simple 2D flow
contains Kelvin–Helmholtz instabilities in which the shear layer is perturbed by a sinusoidal disturbance that leads to a
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Fig. 6. Convergence of numerical approximations for Gaussian functions (only even number of grid cells are plotted).
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roll-up of the vortex sheet into a cone-like shape. The domain X = [0,1]2 is taken for this study and the initial velocities are
given by
u ¼
tanhðrðy� 0:25Þ for y 6 0:5;
tanhðrð0:75� yÞÞ for y > 0:5:

�
ð51Þ

v ¼ e sinð2pxÞ: ð52Þ
This flow is governed by three parameters, the shear layer width parameter r, the perturbation magnitude, e and the Rey-
nolds number. In this study the Reynolds number based on the maximum velocity and the length of the computational do-
main is set to 10,000, the shear layer parameter and the perturbation magnitude are 30 and 0.05, respectively. This setting is
similar to a thick shear-layer problem studied in [31]. In order to show that the proposed scheme converges towards the cor-
rect solution, we generate a reference solution of this case on a 5122 grid using a pseudo-spectral code. In this code, the com-
putation is performed on the physical space and the derivatives are computed using FFT differentiations while the
divergence form is used for the convective term.

We provide a qualitative overview of the solutions using the contour plots of the vorticity in Fig. 7. The improvement of
the fourth-order over the second-order scheme is clearly visible. At the lowest resolution, the fourth-order solution pre-
serves the correct shape of the vortex sheet while it is already distorted in second-order solution. The fourth-order has more
wiggles but their magnitudes are smaller than those of the second-order. When the resolution is doubled, numerical wiggles
are still disturbing the second-order solution. On the other hand, the solution of the fourth-order scheme is already smooth
and the numerical wiggles at this resolution are comparable to those on the finest solution (2562) of the second-order
scheme. In this figure we see that even on the coarsest grid which is heavily under-resolved, the fourth-order scheme still
delivers an appreciable solution unlike the second-order scheme.

The maximum errors of the fourth-order schemes and the convergence rates with respect to the reference solution are
shown in Table 2. In this convergence study we transfer the pointwise value of the reference solution to the cell-averaged
ones using seventh-order integration and cubic spline interpolation. Here we compare the two formulations of the convec-
tive velocities. On coarse grids, T4 is slightly more accurate than DF4. This is because the leading truncation term of T4 is
smaller. The convergence rates of these two formulations approach fourth-order when the grid is sufficiently fine. The dif-
ferences between the solutions using a different convective velocity are very small and the solutions are visually indistin-
guishable. For this reason, only the results from DF4 were shown in Fig. 7.

We repeat the simulation again, but with second-order solution of pressure, i.e. the divergence and the pressure gradient
are computed with second-order schemes and the discrete Laplacian is D2G2. The result is given in Table 3 for the T4 con-
vective velocity. The effects of the second-order pressure can be observed at every grid size. The convergence rate of the L1-
norm falls between second- and third-order. The convergence rate of the L2-norm tends to third-order. At low resolution, the
errors primarily stem from the wiggles inherit in the approximation of the convective term and therefore we see little dif-
ferences between second-order and fourth-order pressure. Once the wiggles have disappeared (N P 1962), the error of the
solution using second-order pressure is significantly larger.

To explore the stability of the proposed scheme, we performed inviscid simulations using the same initial conditions on
1282 grid and advance the flow in time for 10 through flows. The L2 norms of the cell-averaged velocities that is commonly
considered as the discrete kinetic energy are plotted in Fig. 8(a) for three CFL numbers. First the discrete kinetic energy is
increased by 0.05 per mille and then declined. When the time step size is reduced, the reduction of the energy in the second
part (t > 0.8) gets smaller suggesting that the reduction in the kinetic energy in the second part comes from the dissipative
property of the third-order Runge–Kutta time-integration. The increase of the kinetic energy in the first part however dose
not change with the time step size which indicates that this increase is associated with the spatial scheme. We analyze the
discrete convective matrix C(u) in the inviscid flow equations i.e. ut + C(u)u. This convective matrix comprises of the convec-
tive velocity and the interpolation matrix of the momentum (see [21]). The diagonal elements of C(u) of the proposed algo-
rithm are exactly zero, but the off-diagonal elements are not skew-symmetric which leads to small errors in the energy
conservation. The level of this error is small, and is comparable to the divergence form of the convective term investigated
in [13]. Fig. 8(a) also indicates that the error in the energy conservation is significantly lower than the error of the time-inte-
gration at the practical CFL numbers (CFL = 0.25 and 0.5). Even though this flow is inviscid and the grid is highly underre-
solved (shown by flat energy spectra in Fig. 8(b)), the proposed algorithm does not blow up after a long integration time.
In finite difference discretisation, Knikker[13] was able to demonstrate the energy conservation on uniform grid. To the best
of our knowledge, the energy conservation for compact scheme in finite volume context is still an open issue. The test we
made here demonstrate that energy conservation is violated only to a very small degree and that long term stable solutions
could be achieved without any further stabilization or regularization.
7.3. Instability of plane channel flow

The instability of plane channel flow is a common test case used to validate higher-order accuracy of numerical schemes.
In this test case, the parabolic profile of the channel flow is disturbed by the most unstable eigenfunction. The solution of the
velocity fields can be described by the Orr–Sommerfeld equation:
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uðx; y; tÞ ¼ ð1� y2Þ þ eReal WðyÞeiðax�xtÞ� �
ð53Þ

vðx; y; tÞ ¼ �eRealðaiW ðyÞeiðax�xtÞ� �
: ð54Þ



Table 2
Maximum error of the streamwise velocity and its convergence rate of T4 and DF4 convective velocities using fourth-order solution of pressure at t = 1.2, in
doubly periodic shear layers flow.

N jej1of u Convergence rate

T4 DF4 T4 DF4

642 2.5835E�02 2.7744E�02 – –
962 1.0762E�02 1.1147E�02 2.16 2.25
1282 4.4665E�03 5.0558E�03 3.06 2.75
1962 8.9431E�04 1.2273E�03 3.97 3.49
2562 2.6394E�04 2.5998E�04 4.24 5.39

Table 3
Error and the convergence rate of the streamwise velocity at t = 1.2 using DF4 convective velocities and second-order solution of pressure (D2G2).

N Error of u Convergence rate

jej1 jej2 L1 L2

642 3.23E�02 1.36e�01 — —
962 1.22E�02 1.03e�01 2.4 2.7
1282 5.54E�03 8.32e�02 2.7 2.7
1962 2.02E�03 5.93e�02 2.5 2.8
2562 1.02E�03 4.57e�02 2.4 2.9
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The energy of the perturbation and its growth-rate is computed by:
EdðtÞ ¼
Z

X
ððuðx; y; tÞ � uðx; y; 0ÞÞ2 þ ðvðx; y; tÞ � vðx; y;0ÞÞ2Þdxdy; ð55Þ

GpðtÞ ¼ 2xi ¼ 2ln
@EdðtÞ
@t

� 
: ð56Þ
The Orr–Sommerfeld eigenfunction W(y) here is a stream function and only the real part of the perturbation is taken into
the velocities. This test-case is sensitive to the balance among the terms in the Navier–Stokes equations. The viscous term
attenuates the perturbation while the convective term transfers energy from the main flow to the perturbation. If the
approximation of the diffusion term is accurate and the convective term is under approximated, the growth-rate of the dis-
turbance will be less than the analytical one. This is a common situation found in finite difference methods applied to this
case [14,32–35]. On the other hand, the growth-rate will be larger than the analytical one when the situation is reverse.
Higher-order convergence can only be achieved if every approximation is correctly treated. Therefore this is a formidable
test case for numerical schemes and the boundary closures. The conditions of this test are set to the same conditions used
in [32] where Re = 7500, a = 1, e = 0.0001 and the only unstable mode is x = 0.24989154 + 0.00223498i. The expected ana-
lytical growth rate is Gp(t) = 4.46996E�03. The computational domain is [Lx,Ly] = [2p H,2H] based on the channel half-width
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H. The CFL is kept constant at 0.05 such that the errors are dominated by the spatial approximations. The simulations are
calculated using double precision and the growth-rate of the perturbation is measured at t = 50.29H/Uc where Uc is the veloc-
ity at the center of the channel.

Our grid dependency study shows that Nx = 32 is sufficient to conduct a convergence study in y-direction with the fourth-
order scheme. In order to be on the safe side the results in Tables 4 and 5 are computed using Nx = 64. Table 4 shows a clear
convergence towards fourth-order for both formulations of convective velocities on uniform grids. A fourth-order conver-
gence rate on non-uniform grids is shown in Table 5. The smallest grid spacing on these grids is set to 1/Ny (half-size of
the uniform grid). The predictions of the growth-rates on non-uniform grid are comparable to those on uniform grids with
twice the number of grid cells. Both formulations of convective velocities deliver a comparable level of accuracy.

We further use this case to study the role of the nonlinear correction. To this end, we plot in Fig. 9(a) the time evolution of
the perturbation energy for two grid resolutions with and without nonlinear correction. The figure shows that the nonlinear
correction facilitates additional energy transfer to the perturbation bringing the growth-rate closer to the analytical one. On
the coarse grid, the nonlinear correction is helpful, but not as impressive as on the fine grid. It has to be noted that a growth-
rate higher than the analytical one does not imply an instability of the numerical scheme. It means that the perturbation is
gaining more energy from the mean field than what is lost by the dissipation. In fact, the total kinetic energy of the system is
reducing in all cases shown there.

Several grid systems in the wall-normal directions have been used to simulate this flow. Chebychev grids are used in [32]
and geometric grids are used in [14,33]. The geometric grids deliver better results at a much lower number of grid points.
Further, the Chebychev grid does not offer flexibility in grid placement. In this test case, the spatial gradient of the pertur-
bation varies greatly. The grid cells should be distributed in a way that the errors over the whole region are comparable. The
effects of the grid distribution in the wall-normal directions are shown in Fig. 9(b) where we plot the perturbation growth
Table 4
Convergence study in y-direction of the instability of plane channel flow on uniform grid with Nx = 64. The table shows growth-rates of perturbations (Gp), their
errors (ep) and the corresponding convergence rates (Ca).

Ny Gp(T4) Gp(DF4) ep(T4) ep(DF4) Ca(T4) Ca(DF4)

32 9.66E�03 1.09E�02 5.19E�03 6.44E�03 — —
64 6.34E�03 6.37E�03 1.88E�03 6.44E�03 1.46 1.76
128 4.66E�03 4.65E�03 1.90E�04 1.78E�04 3.31 3.42
256 4.48E�03 4.47E�03 1.08E�05 1.41E�06 4.13 6.97
512 4.47E�03 4.47E�03 7.37E�07 3.19E�08 3.88 5.47
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Fig. 9. (a) Time evolution of the perturbation energy on: (a) two uniform grids and (b) non-uniform grids with different stretching factor (S). All grids are
computed with Nx = 64. On uniform grid, the resolution in the wall-normal direction of the two grids are Ny = 64 and 128 and the result with nonlinear
correction are denoted by 64 + NC and 128 + NC while the result without the nonlinear correction are denoted by 64 and 128.

Table 5
Convergence study in y-direction of the instability of plane channel flow on non-uniform grid with Nx = 64.

Ny Gp(T4) Gp(DF4) ep(T4) ep(DF4) Ca(T4) Ca(DF4)

32 5.919E�03 6.432E�03 1.45E�03 1.96E�03 — —
64 4.628E�03 4.646E�03 1.58E�04 1.76E�04 3.20 3.48
128 4.475E�03 4.485E�03 4.55E�06 1.52E�05 5.12 3.53
256 4.470E�03 4.470E�03 1.91E�07 4.35E�07 4.57 5.06
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rate on four different grid distribution with the same number of grid cells (Nx = 32 and Ny = 64) on the same scale as the pre-
vious figure. The uniform grid (S = 1.000) and the non-uniform grid with S = 1.046 are the ones reported in Tables 4 and 5,
respectively. A stronger stretching (S = 1.087) leads to an excellent prediction of the growth rate while the strongest stretch-
ing (S = 1.124) gives worse result.

In the previous three test cases, we have evaluated the proposed scheme including the boundary closures. A fourth-order
convergence rate is obtained in all cases with the fourth-order approximation of pressure. The overall accuracy falls to third-
order if the pressure was only treated by a second-order scheme. The nonlinear correction plays crucial role in energy trans-
fer in the instability of plane channel flow. In the next step we investigate the application of the fourth-order scheme in fully
turbulent flows.
7.4. Turbulent channel flow: Res = 180

In this section we investigate the accuracy and the performance of the newly developed scheme in turbulent channel flow
at Res = 180, based on the friction velocity us. This test case has been employed to study turbulence and its modeling for the
past two decades. Results of numerical simulations using spectral codes from several authors [18,36,37] are publicly avail-
able for comparison. Numerical simulations using other classes of approximation should converge to these data.

The performance of several higher-order schemes were reported to be comparable to second-order schemes in simula-
tions of turbulent flows. Therefore we carefully investigate the performance of the proposed scheme by evaluating the
two choices of convective velocity, performing a grid dependency study and comparing the runtime to the second-order
scheme. The parameters of the numerical grids and the computational domain used in this study are listed in Table 6 along
with the three spectral simulations which are used for comparison. In our simulations, the streamwise, spanwise and wall-
normal directions are set to x, y and z accordingly. The computational box is [Lx,Ly,Lz] = [12.57H,4.20H,2H] which is the same
domain used in [18]. Homogeneity is assumed in streamwise and spanwise directions and thus periodic boundary conditions
are applied. The top and the bottom walls are treated by no-slip boundary conditions. All spatial dimensions in this section
are normalized by channel half-width (H) if not stated otherwise. The flow is driven by a constant pressure gradient which is
added as a source term in the momentum equation of the streamwise velocity. There is no control of mass flow within the
simulations. The driving pressure gradient is balanced only by the shear force on the top and bottom walls. The initial veloc-
ity field is obtained from imposing a random perturbation on the logarithmic velocity profile. The criterion of a statistically
steady state is assumed when the bulk flow velocity is not changed more than 0.5%Ub over a period of 10Lx/Ub. After the
statistically steady state is reached, the flow is further advanced for 10Lx/Ub. The sampling is then performed for 100Lx/
Ub together with the averaging in the homogeneous directions.

This study is organized into four parts. In the first part, we rule out the T4 convective velocity. The accuracy of the pro-
posed scheme with the DF4 convective velocity is demonstrated in the second part, the grid dependency study. In the third
part, we evaluate the efficiency of the fourth-order scheme. Its computational cost and accuracy are compared against the
second-order scheme. Having identified accuracy and performance of the full scheme, we discuss the necessity of the fourth-
order solution of pressure and the influence of the nonlinear correction in the fourth part.
7.4.1. Choice of the approximation of the convective velocities
In laminar flows, the flow fields are usually smooth which was also the case for the flows presented earlier. In all previous

simulations, the cell-averaged divergence of the convective velocities was always smaller than 10�6uref/L for the respective
characteristic length (L) and velocity (uref) in those cases. Consequently, the differences between the two alternatives for the
convective velocities were negligible. In this section we investigate the behaviour of the two alternatives for the convective
velocity, T4 and DF4 in a turbulent channel flow. In order to exclude other effects, we use uniform grids in every direction
and turn off the nonlinear correction. Here, grid A and grid B listed in Table 6 are considered. The convective velocities T4 and
DF4 perform significantly different on the coarse grid but they are comparable on the fine grid (Fig. 10(a) and (b)). According
to this graph, the T4 convective velocity should not be used in LES and is probably equivalent to DF4 when the grid is DNS-
like. However, the absolute values of the cell-averaged divergence on the u-momentum cell shown in Fig. 10 shifts our favour
Table 6
Specification of numerical grids used in the grid dependency study.

Grid NX NY NZ Dx+ Dy+ Dzþmin Dzþmax

A 48 42 64 47.2 18.0 5.6 5.6
B 96 64 128 23.6 11.8 2.8 2.8
C 32 32 32 70.7 23.6 5.4 18.6
M1 64 64 64 35.4 11.8 2.7 9.7
M2 96 80 96 23.6 9.4 1.1 5.8
F 128 128 128 17.7 5.9 0.72 4.4
MKM1999 [18] 128 129 128 17.7 5.9 0.054 4.4
KMM1987 [36] 192 129 160 11.9 7.1 0.054 4.4
H2006 [37] 256 256 121 16.9 8.4 0.062 4.7
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Fig. 10. Mean profiles of streamwise velocity along wall-normal direction of grid A (a) and grid B (b). Averaged mass imbalance per unit volume on u-
momentum cells of T4 (c) and DF4 (d).
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entirely to DF4. The divergence-free convective velocity conserves mass close to machine accuracy on the momentum cell
while the T4 formulation creates the maximum cell-averaged divergences of approximately 0.045Ub/H. This means that an
artificial momentum of the comparable amount are being removed or added per unit-momentum (see Eq. (10)). Therefore
we choose DF4 to approximate the convective velocities for the remaining tests.

7.4.2. Grid dependency study
In this part, the accuracy of the fourth-order compact scheme is evaluated using grid C to F listed in Table 6. These four

grids mimic different situations one may encounter in numerical simulations of turbulent flows. Grid C is on the extreme end
of the resolution where one can perform a reasonable LES. M1 is too coarse for DNS simulations but an excellent resolution
for LES. M2 is a reasonable and F is a good resolution for DNS. The grid spacings of grid F match the ones used in [18] in the
center of the channel.

The mean flow variables shown in Table 7 demonstrate a convergence towards the spectral solution. The mean bulk and
center line velocities clearly converge towards the spectral solution. On the grid C, the bulk flow is underestimated by 6.4%
and the error is reduced to 2.3% on M1. Results on grid M2 and grid F are very close and comparable to the reference
solutions.
Table 7
Mean flow variables.

Grid Uc/us Ub/us Cf

C 16.68 14.55 9.35E�3
M1 17.62 15.20 8.57E�3
M2 18.19 15.63 8.20E�3
F 18.34 15.77 8.16E�3
KMM1987 [36] 18.20 15.63 8.18E�3
MKM1999 [18] 18.30 15.52 8.18E�3
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Qualitative convergence of the scheme is shown in Fig. 11(a). Amiri et al. [8] incorporated LES into Pereira’s fourth-order
scheme and found that the result without explicit filtering is poor on the 643 grid which is equivalent to M1. Here we can
obtain a satisfactory result on the same resolution without any filtering or modelling. Increasing resolution from grid M1 to
grid M2 places the profile almost on top of the spectral solution. When this profile is plotted together with two spectral solu-
tions in Fig. 11(b), we see that it is lying between these two. The mean streamwise velocity on grid F is not plotted here be-
cause it is lying between the two spectral solutions as well.

In Fig. 11(c) the square-roots of the surfaced-averaged values of the Reynolds normal stresses e.g. ½uu�yz
i;j;k extracted from

the momentum equation are plotted against the two reference spectral solutions. It confirms that the grid M2 is sufficient to
capture all scales of engineering interest. The Reynolds normal stresses of the fourth-order scheme do not differ from the
reference solutions more than the difference between those two. This level of difference is much smaller compared to uncer-
tainties occurring in physical experiments.

Next we consider the higher-order statistics, the skewness and the flatness factors. The Skewness factor shown in
Fig. 12(a) confirms the consistency and convergence of the scheme. The profiles of grid M2 are satisfactory close to the spec-
tral solution. The profile of S(u) is on top of the reference solution almost everywhere and the profile of S(w) is satisfactory.
The value of 0.06 is obtained near the wall compared to �1.3 when the second-order scheme was used (not shown). To the
best of our knowledge, all second-order codes predict negative S(w) near the wall when the grid resolution is not finer than
those used in [18,36]. Increasing the solution to grid F clearly improves the accuracy of the solutions and brings S(w) on top
of the spectral solution. The flatness factors, are plotted in Fig. 12(b). The profiles on both grids are highly satisfactory for the
streamwise velocity but notable shortcomings are observed in F(w). The deviations we see here in the skewness and flatness
factors can be attributed to small scale structures at the far end of the spectrum. In order to reveal how much the fourth-
order scheme is behind the spectral scheme, one-dimensional spectra of the cell-averaged values are investigated and plot-
ted in Fig. 13(a) and (b). In these figures, the Fourier spectra are normalised by the value of the first mode. The energy
spectrum Euu in the y-direction on grid C is far from the spectral solution, but the spectra on the other grids follow the
one of the spectral code nicely. In the streamwise direction, where the convection is much stronger, the energy spectra
on all grids follow the spectral solution up to about 60% of the Nyquist limit and then start to fall sharply. This is consistent
with the sharp drop of the transfer function of the fourth-order compact deconvolution used for the convective fluxes shown
in Fig. 5.
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Fig. 11. (a) Convergence of the mean streamwise velocity profile towards the spectral solution from [18]. Profiles of the mean streamwise velocity (b) and
the square root of Reynolds normal stresses (c) on grid M2 compared to reference solutions from [18] (solid line) and [36] (dashed line).
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Fig. 12. Skewness factor (a) and flatness factor (b) on grid M2 and grid F.
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Fig. 13. One-dimensional energy spectra in spanwise (a) and streamwise (b) directions of the streamwise velocity at z+ = 178.
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7.4.3. Comparison with the second-order scheme
The improvement of the compact fourth-order over the second-order scheme is illustrated in Fig. 14(a). The profile of the

mean streamwise velocity of the fourth-order scheme is closer to the spectral solution at the same number of grid points. The
second-order scheme requires twice number of grid cells in each direction to have a result comparable with the fourth-order
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scheme. It was shown earlier that the fourth-order scheme only requires 0.7M grid cells to match the solution of spectral
codes up to the second-order statistics. The second-order scheme cannot match the first-order statistics even at 2.1M i.e.
three-times more cells than the fourth-order. The energy spectra Euu in x-direction show an interesting result. The sec-
ond-order drops sharply at kx � 25. This means the second-order scheme can accurately capture only 40% of the whole en-
ergy spectrum while the fourth-order can capture up to 60%.

In order to provide a clear picture of the efficiency of the fourth-order scheme, we document the CPU seconds used to
advance the momentum equation (Eq. (6)) per time step in Table 8. The runtimes are broken down into the computation
of the momentum equation (M) and the solution of pressure (P) which includes the calculation of divergence, solution of
Poisson equation and velocity correction. The computations are performed using double precision on an AMD Opteron
8216. The compiler is Intel FORTRAN and the optimization is set to -O3. Due to the logarithmic complexity of the FFT, the
CPU-time of the solution of pressure increases fastest. It occupies 50% of the total time on the finest grid in the fourth-order
scheme. At the same number of grid cells, the fourth-order is 2.4-times more expensive in average. If one considers that the
fourth-order scheme requires only half of the grid cells in each direction, this means the compact fourth-order scheme can
deliver a result 5-times faster than the second-order scheme per time integration. A larger grid size allows a larger time step,
therefore the compact fourth-order scheme can be effectively 10-times more efficient than the second-order scheme. This
luxury efficiency can be spent to get a more accurate solution in a shorter time.
7.4.4. Effects of second-order solution of pressure and nonlinear correction
In what follows the effects of the second-order approximation of the pressure and the nonlinear correction for convective

term are investigated. The first effect is studied by keeping the approximation of the momentum and the diffusive terms at
fourth-order but compute the pressure gradient and the divergence by second-order approximations. The second effect is
investigated by using the fourth-order scheme but turn off the nonlinear correction.

Numerical simulations are performed again on grid C, M1 and M2. Only the mean streamwise velocity profiles on grid C
are plotted in Fig. 15 which shows that the effects of the pressure treatments are very strong while those of the nonlinear
correction are much smaller. Similar observations can be made on other grids as well (not shown). The fourth-order solution
of pressure is therefore essential to obtain accurate solutions and a convergent scheme. The nonlinear correction takes care
of the small variations on the surfaces of the momentum cells. It will not improve the accuracy of the convective term on
coarse grids when the error in the approximations of momentum and convective velocities are relatively large. This effect
is similar to the relationship between the truncation errors and the subgrid-scale model mentioned by Ghosal [1]. The non-
linear correction costs roughly 30% of the time used in the computation of the momentum equation. Thus when performing
Table 8
CPU-seconds per time step spent in momentum equation (M) and the enforcement of continuity (P) on an Opteron 8216.

Grid Fourth-order Second-order Ratio

M P Sum M P Sum

C-323 0.11 0.05 0.16 0.03 0.032 0.06 2.73
M1-643 1.08 0.73 1.89 0.19 0.621 0.81 2.34
M2-962 � 80 4.22 3.55 7.77 0.58 2.343 2.92 2.66
F-1283 9.72 9.80 19.52 1.56 8.716 10.28 1.90
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LES and the grid spacing is much larger than the Kolmogorov length scale, the nonlinear correction can be turned off for a
better cost/performance ratio. However, when performing DNS, the nonlinear correction would be necessary when highly
accurate solutions (comparable to spectral codes) are sought and the grid was sufficiently fine.

7.5. Turbulent channel flow: Res = 590

Since the mass and momentum are fully conserved in our scheme but the discrete kinetic energy are not, the main ques-
tion now is: how reliable this scheme can be when applied to high Reynolds number flow? To answer this question we per-
form simulations of turbulent channel flow at Res = 590. First we consider a relatively fine grid followed by simulations on
coarser grids. In DNS, the grid resolutions have to be fine enough to capture the dynamic significant features of the flow.
Sagaut [38] suggests that, for the turbulent channel flow, the grid resolution should be [Dx,Dy,Dzmin,Dzmax]=[15+,5+,1+,10+].
These values are already coarser than the one surveyed in [39]. However, the previous results on M2 grid indicate that the
proposed scheme could deliver the first- and second-order statistics accurately using a grid resolution significantly coarser
than the suggested values. To further check if such resolutions can deliver a comparable prediction for higher Reynolds num-
ber flows, we design the fine grid here such that the respective grid resolutions are [22.1+,9.2+,2.4+,13.5+]. This leads to 4.8M
grid cells in total ([Nx,Ny,Nz] = [168,256,144]). Fig. 16 shows that the mean streamwise velocity profile collapses on the ref-
erence solution which was computed on 38 M grid points. The velocity fluctuations are very close to the reference solution
[18] with a slightly under predicted trend. According to this result we can conclude that the fourth-order compact scheme
can deliver accurate predictions for turbulent boundary layer flows with the grid resolutions 50% coarser than previously
suggested. Therefore the proposed scheme is an excellent candidate for direct numerical simulation of turbulent flows.

Next, we turn our attention to the stability on coarse grids [Nx,Ny,Nz] = 25,25,38] (24 K cells). The coarse grid here is the
minimum grid resolution that can deliver a long-time stable simulation, without any kind of stabilizations or modeling. The
bulk flow on this grid is over predicted by 7% and ratio of the maximum velocity to the friction velocity (Uc/us) obtained with
this grid is 21.7 compared to 21.3 in the reference solution. We cannot reduce the grid further because the strong transition
of the gradient near the wall is a fix onset of aliasing errors. The higher the order of the scheme, the more it is affected by this
error. We found that at least three cells outside the log layer and a grid stretching less than 15% are necessary for a stable
simulation. We have made tests with low-pass filtering of the deconvoluted face-averaged momentum to stabilize the sim-
ulation. This filtering allows for further coarsening of the mesh to [25,25,32] cells at a slightly improved accuracy.

8. Conclusion and outlook

We have presented a fourth-order finite volume method using compact schemes for transported momentum and a diver-
gence-free convective velocity. The accuracy of spatial approximations was studied by Fourier analysis. The deconvolution
needed to approximate the momentum fluxes from the volume-averaged velocities is found to be the critical part of the
whole scheme.

On staggered grids the second-order solution of pressure limits the accuracy of the solver but not as strong as observed in
[12] for collocated grids. A convergence rate of third-order can be achieved on staggered grids when the pressure is only
treated with second-order accuracy. This finding is supported by a comparative error analysis in Fourier space. The cell-cen-
tered deconvolution used to enforce the continuity on staggered grids has higher resolving power than the inter-cell decon-
volution on collocated grids. Thus more information is preserved in the velocity field. A third-order convergence rate can be
obtained whilst it is capped at second-order on collocated grids. Nevertheless, a fourth-order solution of pressure is required
to reach overall fourth-order convergence.
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We studied two formulations for the fourth-order convective velocities, a conservative (DF4) and non-conservative (T4). A
difference between them can hardly be observed in laminar flows because of the smoothness of the field. In turbulent flows
they give significantly different results on coarse grids. Therefore divergence-free formulations should be used for the con-
vective velocity to maintain the underlying conservation properties of the Navier–Stokes equations.

The high resolution property and the efficiency of the proposed scheme were demonstrated using a turbulent channel
flow in which the convergence towards the spectral solution is demonstrated. The proposed scheme was shown to deliver
reasonable solutions for turbulent flows at Res = 590 using 24 K grid cells. On extremely coarse grid, low-pass filtering can
stabilize the simulation and improve accuracy of the solution. The effective grid resolutions on [Dx, Dy,Dzmin,Dzmax] �
[22+,9+,2+,10+] were found to be adequate for accurate predictions of turbulent channel flows with small error in third
and fourth-order statistics. Increasing the grid resolutions improves these higher-order statistics. We have quantified the
efficiency of the proposed scheme and found that it requires half of the resolution per coordinate direction to have a com-
parable result with the second-order scheme. Effectively, the fourth-order scheme can be ten-times faster than the second-
order scheme in advancing the momentum per one dimensionless time unit, at a comparable accuracy. This finding is in con-
trast to statements of other authors who did not find crucial improvement of the performance of the higher-order schemes in
turbulent channel flow.

The fourth-order solution of pressure is essential, physically and numerically. The second-order pressure will only give, at
best, a third-order convergence rate for the velocities and it delivers poor solutions in turbulent channel flows. The nonlinear
correction is found to be useful on a very fine grid and unimportant otherwise. It could be turned off when performing LES for
a better cost/performance ratio.

For the proposed compact scheme to be a replacement of the second-order scheme in numerical simulations of turbulent
flows, there are some further problems to be solved. The two most crucial problems are the parallelization of the compact
scheme and the iterative solution for the projection method. Standard parallel algorithms solving tridiagonal systems on dis-
tributed memory computers require twice the number of floating point operations than the sequential algorithm. When
solving the Poisson equation by iterative methods we have to deal with the 19-point Laplacian which poses a significant
work load and only a few works addressing the solution of such matrices have been published to now. Therefore further re-
search of multigrid method for these new discrete Laplacians could offer a significant improvement in the efficiency of the
fourth-order compact scheme.
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